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Introduction
The analysis of free and forced convection heat transfer in fluid-saturated
porous media finds applications in a tremendously wide range of environmental
and industrial fields including groundwater pollution[1], energy storage in
aquifers[2], biophysical heat transfer[3], subterranean deposition of heat-
generating materials[4], volcanic and geophysical flows[5] etc. In petroleum
reservoir engineering[6] the understanding of porous convection is of great
significance, since this comprises the basic mode of oil and gas circulation via
rocks and sandstone, enhanced oil recovery methods, oil shale harvesting, and
in situ reservoir combustion techniques[6]. To exploit geothermal energy
effectively and successfully, engineers require a knowledge of initiating
convection currents in geothermal fluids[7,8]. Convective flow in particular is
also observed frequently during filtering and drying processes[9] and in
packed-bed chromatography. In electronic engineering, cooling mechanisms for
semi-conductor devices have been modified by the introduction of porous wafer
layers. In solar energy systems “porous” absorbers have proved revolutionary
in optimising the storage of absorbed solar energy. Thermal losses from the
receiver of a concentrating solar collector often dominate the performance of the
collector system under high temperature operations. Conventional line focus
receiver designs incorporate transparent enclosures and selective surfaces to
minimize convective and radiative heat transfer losses. Many innovative
designs have been proposed and implemented in practice, exploiting the
property of porosity, and have operated with lower losses at elevated
temperatures compared with original designs, with the added advantage of
ease of construction and inexpensiveness of materials, as discussed at length by
Duffie and Beckman[10].

k = permeability of the porous medium
b = Forscheimmer constant
L = standard reference length
x0 = general station along plate

Greek symbols
α = Boundary layer parameter U0δδ/vf
α = thermal diffusivity = κ/(ρCp)f
β = coefficient of cubical expansion
ε = porosity of the medium
θ� = dimensionless temperature variable
vf = fluid kinematic viscosity µf /ρf
κ = stagnant thermal conductivity of 

fluid-saturated porous medium
κf = fluid thermal conductivity
λ = thermal conductivity ratio κf/κ
µf = fluid dynamic viscosity
µ/ = effective viscosity of medium 

(Brinkman-modified viscosity) 
Λ = fluid-matrix viscosity ratio = µ//µf

δ = boundary layer thickness 

η = spanwise pseudo-similarity coordinate
ξ = streamwise pseudo-similarity coordinate
ρf = fluid density
ψ = stream function

Superscripts
/ = differentiation with respect to η..

= differentiation with respect to x

Subscripts
f = fluid
w = wall condition
∞ = free stream condition

Abbreviations
LHS left hand side
RHS right hand side
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The vast majority of studies of convection in porous media have employed
the classical Darcy formulation introduced over a century ago and later re-
formulated by Dupuit[11] as the macroscopic equation of motion for Newtonian
fluids in porous media at a low Reynolds numbers range of 1-10, who showed
the flow to be linearly dependent upon the pressure gradient and the
gravitational force. The mean filter velocity (seepage velocity or Darcy velocity)
v was taken to be proportional to the sum of the pressure gradient ∇ p and the
gravitational force gradient ∇ g, but the important effect of “inertia” was
neglected, leading to the modern form of the Darcy equation viz:

(1)

This century a number of modelling techniques for porous media
hydrodynamics have been developed,which implement various different
mathematical theories such as random fields, homogenisation theory, spectral
analysis or geometrical structures. These models are more concerned with the
structure of the porous medium and its local and global properties as opposed
to the bulk effects of the medium on flow or heat transfer. These latter
considerations, being of paramount importance in engineering fluid mechanics,
have led to a preference for mathematical models which translate porosity
effects into an “additional resistance term” added to the standard flow
equations, such as the Navier Stokes equations or more popularly the boundary
layer equations – these constitute drag force models. Clearly the most basic
drag force type model is the Darcy flow model – unfortunately this yields
minimum information about the properties of the permeability of the porous
medium and cannot simulate any boundary friction effects which are vital in the
accurate modelling of viscous fluid flows. Darcy’s law simulates only bulk
resistance, and therefore the Dutch petroleum engineer Brinkman[12] re-
assessed the problem of flow in porous media to capture the effect of viscous
diffusion or boundary friction, this investigation culminating in the so-called
Brinkman equation, which is fundamentally a “viscous force” equation, as
described by Bear and Bachmat[13]. Brinkman produced a relationship for the
porosity ϕ of “an assemblage of spherical particles” and the permeability k. He
assumed that porosity ϕ was of sufficient magnitude to validate his equation
for incompressible flow past an individual sphere i.e. ∇ 2v = 0 and basically
superimposed the viscous penetration dominated flow (Stokes creeping flow)
with the Darcy flow. This fundamental work was, as discussed by Nield[14],
more than simply an extension of the Darcy law. It does not include inertial
effects but instead incorporates an extra Laplacian type viscous term µ∇ 2v.
Consequently the Brinkman equation, which is a heuristic momentum equation,
states, in the absence of a body force:

(2)



HFF
8,5

562

where µ denotes the Newtonian dynamic viscosity. Initially in his study
Brinkman used the Einstein formulation for the effective viscosity of a
suspension,viz:

(3)

The last term in (2) is commonly called the Brinkman term and it is analogous
to the “diffusion term” in the Navier-Stokes equations or macroscopic bulk
viscous shear-stress diffusion. Nield and Bejan[15] have indicated that this
extension was carried out to account for the transition from Darcy flow to
highly viscous flow (in the absence of a porous medium) in the limit of
extremely high permeability i.e. approaching the situation of a pure fluid or
“clear” flow. It is now well understood that the effects of a solid boundary on
flow in a porous medium originate from the momentum diffusion generated by
the boundary frictional resistance or “Brinkman friction” which accompanies
the bulk frictional drag (Darcy resistance which is induced by the solid matrix).

Experimentally, Lundgren[16] has shown that the Brinkman model is valid
only at very high porosity values i.e. nearing unity. A figure of 0.95 has been
suggested by Durlofsky and Brady[17].The utility of the Brinkman equation
formulation is therefore demonstrated by problems in which the permeability is
high near the boundary i.e. the particles are “loosely” packed so that there
exists a boundary layer thickness in close proximity to the surface. The
boundary layer at the wall has been experimentally proven by Beavers and
Joseph[18] to be very thin – of the order of several particle diameters, and there
is a discrepancy between the effective and bulk viscosity, the former varying
within the boundary layer. The Brinkman results for permeability have shown
some digression from experimental results. To overcome these discrepancies
many investigators have suggested modifications of the Brinkman equation.
There is a discrepancy between the Brinkman theory and experiment when
normal fluid viscosity is used for the matrix-fluid combination, the effective
viscosity µ/ concept overcomes this. µ/, which is a bulk property, is a function of
both the structural properties of the matrix and the fluid viscosity. In
Lundgren’s major work[16], a justification of the Brinkman equation is provided
and it is demonstrated that the ratio of µ/ to the fluid viscosity µ is not always
greater than 1. Lundgren’s analysis is for dilute concentrations of spheres and it
has been suggested that the decrease in the effective viscosity for larger
concentrations is caused by the diluteness. The analysis basically involves non-
uniform flow via a dilute bed of spheres. The mean transition or drag at a point
is determined by Lundgren[16] and then finally the µ/ coefficient calculated
using the Brinkman equation.

The Brinkman model is frequently used in the analysis of heat and fluid flow
in “composite” media or porous-plain media. As discussed above, several
modifications have been made to the Darcy law, e.g. the addition of a
macroscopic shear term to the Darcy equation (with µ/ = µ) to simulate velocity
variations near the boundary, or e.g. the rigorous validation of the Brinkman
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extension to the Darcy formulation, for dilute concentrations of particles.
Kaviany[19] has shown that the interface velocity obtained from the Brinkman
equation is the same as that obtained from the “local” simulation, within a
minute margin of error, by comparing the one-D Brinkman model with “direct
simulation” or volume-averaged point solution.

Prasad and Kladias[20] have emphasized that whilst the “viscous drag
effect” may be of relative insignificance for isothermal boundary layer flows,
nevertheless, owing to the association of convective heat transfer with
boundary layer phenomena, the viscous effects, i.e. vorticity diffusion, have a
great influence on the convective transport of energy. Owing to the presence of
the macroscopic shear term the Brinkman equation exhibits full compatibility
with boundary layer regions within porous media. Nield and Bejan[15] have
discussed the validity of including the Brinkman term in many studies,
particularly for models involving both Forscheimmer inertial effects and
Brinkman boundary effects – the Forscheimmer model works best at low
porosities in contrast to the Brinkman model which is really only valid at larger
porosities. The question immediately arises as to whether either approximation
is valid at the opposite extremity. A compromise may be to use intermediate
porosities such as 0.4-0.7 which typify geothermal reservoirs. 

Evans and Plumb[21] examined theoretically the boundary layer flow past a
vertical isothermal surface, indicating that for Darcy numbers Da < 10-7 ( Da
being defined by k/L2, k the permeability, L being the plate length), the viscous
boundary effect was not significant. A lower rate of heat transfer was predicted
with the Brinkman term included. Ganapathy and Purushothaman[22] studied
thermal convective flow from an instantaneous point source in a porous
domain. They concluded that the boundary friction decelerated the momentum
transfer at all times and exerted an influence at radial distances up to order K1/2

from the source. Sen[23] considered the Darcy-Brinkman convective flow in a
shallow porous layer with adiabatic upper and lower plate boundaries and
constant-temperature lateral boundaries, noting a transition in the effect of the
viscous boundary effect on the Nusselt number only above Darcy numbers of
0.0001 after which the Nusselt number was seen to plummet, due to a decrease
in velocity in close proximity to the wall.

Boundary layer studies were also performed by Vasseur and Robillard[24],
Tong and Subramanian[25], Tong and Orangi[26] on free convection in vertical
enclosures, i.e. cavities with various aspects ratios. Invariably it was observed
that as the Brinkman effect rose the heat transfer rate fell again owing to the
velocity decrease at the wall. Takhar et al.[27] recently studied the mixed
convective flow past a hot vertical plate in a porous medium using a
permeability parameter and a porous Reynolds number. Numerical non-similar
asymptotic solutions were sought using a fourth-order Runge-Kutta scheme.
An increase in skin-friction was shown to accompany a rise in permeability. 

The boundary layer flow in an annulus was studied by Parang and
Keyhani[28], heat flux being imposed on both cylinder walls. The Brinkman
term was shown to be only significant for values of Da/φ. > 10–5, (φ denoting
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porosity) these being most severe at the external wall, the rate of heat transfer
falling here, accompanied by a rise in temperature. 

The present study is aimed at collectively studying the combined effects of
bulk first order porous matrix resistance (Darcy effect), boundary friction
(Brinkman effect), frictional work (viscous dissipation) and thermal
conductivity ratio (λ) on the boundary layer heat transfer past a vertical heated
plate in a fully-saturated porous regime. Such a study may be regarded as an
extension of the previous study by Takhar et al.[27] to include the
supplementary effect of various thermal conductivity values for the porous
medium, with an alternative momentum equation formulation, and has not
been studied in the literature. Additionally we have obtained solutions with
both Keller’s finite difference scheme and the shooting scheme (DSRK), the
earlier study[27], however, employing only the shooting method. 

Mathematical model
Consider the steady two-dimensional mixed convective boundary layer flow of
a Boussinesq fluid along a hot flat vertical plate embedded in a homogeneous,
isotropic non-Darcian porous medium. With reference to a Cartesian coordinate
system (x,y) with x-axis directed parallel to the plate and flow direction and y-
axis normal to the plate, the governing equations may be expressed in the form:

(4)

(5)

(6)

with corresponding boundary conditions :

(7)

The following important assumptions are made:

(1) The effects of inertia (Forscheimmer second order drag), hydrodynamic
and thermal dispersion are ignored.

(2) Thermophysical properties of the solid and the fluid are constant except
for the buoyancy term.
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(3) Local thermal equilibrium is assumed between the solid matrix particles
and the percolating fluid allowing a continuum treatment.

(4) The porous medium is assumed to be rigid, i.e. non-deformable,
homogeneous and isotropic with all void-spaces connected.

The appropriate transformed boundary layer equations in dimensionless form
can be shown to take the form:

(8)

(9)

where

(10)

The appropriate pseudo-similarity boundary conditions are :

(11) 

Computational solution by Keller-box implicit scheme
The similarity equations (8) and (9) are to be solved with an implicit central
finite differencing scheme employing Newton’s quasi-linearization and block
tridiagonal elimination described at length by Cebeci and Bradshaw[29].
Originally developed for both laminar and turbulent aerodynamic boundary
layer flows at the California Institute of Technology in 1970, by Professor
Herbert B. Keller[30], this is a finite-difference scheme which has proven to be
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extremely successful in solving parabolic systems. Keller’s method is implicit,
which implies that the unknown variable at the “downstream” station is
expressed in terms of its juxtaposed values immediately downstream and the
known quantities. Implicit methods can determine all the flow variables
perpendicular to the principal stepping direction (e.g. ξ simultaneously).

Keller’s scheme demonstrates greater speed, swifter compilation and superior
adaptability to the majority of other numerical methods used for boundary layer
flows. The Keller-Box scheme, which is implicit, exhibits optimisation of a
number of highly desirable features which supersede the limitations of the vast
majority of boundary-layer numerical solvers, and therefore greatly ameliorates
the solution of general parabolic non-linear PDEs. These are :

(1) Ability to solve systems of differential equations of any order and
therefore not only second order as typified by the laminary steady thin
shear layer, i.e. boundary layer equations which are used when heat and
momentum transfer rates are presumed to depend only on diffusivities.
This means that heat, momentum and mass transfer (species
concentration) similar boundary layer flows can be solved which usually
have a total order of seven and also angular momentum flows (additional
2nd order PDE). Very high order equations can be accommodated with
minimal digital computing – the only drawback is the marked increase in
algebraic mathematics with rising order for the derivation of the matrix
solver subroutine SOLV5[29].

(2) Second order accuracy can be realised with arbitrary non-uniform
spacing in two-dimensions (x,y). Finite difference equations are
generated with a truncation of order O (∆η2) i.e. errors of order O (∆η2).
Cebeci and Bradshaw[29] emphasize that the objective of “accuracy” in
boundary layer computations is to obtain solutions using comparatively
few mesh points rather than high-digit output. Lesser mesh points lead
to faster iteration convergence and therefore higher programming
efficiency. Keller’s method demonstrates this feature very effectively.

(3) Keller’s scheme allows very rapid x or ξ (streamwise similarity variable)
variation which is vital for turbulent boundary layer computations or
complex flows with supplementary effects such as magnetism, radiation,
vortex instability etc.

(4) Keller’s approach facilitates the programming of a large number of
coupled equations directly suiting heat and mass transfer problems.

(5) Keller’s method employs the approach of quickly transforming high
order equations to the form of a multiple first-order system. In the
boundary layer equations the derivatives of certain quantities w.r.t. the
spanwise or normal variable η, e.g. ∂2u/∂η2 must, by necessity, be
introduced as the new unknown functions. Fortunately, owing to the
power of the boundary layer theory approximation derivatives, w.r.t. all
other streamwise variables appear only to first order. The standard
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Keller box steps are applied to each ODE in turn leading to Keller
“momentum” and “energy” coefficients. Initially the governing equations
are transformed from the real x,y coordinates to the pseudo-similarity
coordinates ξ and η so that the boundary layer thickness in (ξ,η )
coordinates is nearly independent of the streamwise distance and can
therefore be represented by a fixed number of profile points at fixed
spacing. The scheme is executed in four distinct stages:
(1) Reduction of the high order ODEs to a multiple system of first order

ODEs.
(2) Finite-difference formulation of the ODEs in terms of central

Newtonian finite-difference operators. Effectively a “grid” or finite-
difference “mesh” is superimposed on the flow field and this defines
the solution domain. The flow variables are computed at only the
intersection points or “nodes” of the grid. Systematically, therefore,
algebraic equations are generated for each mesh point from the
PDEs with the relevant boundary conditions which must exactly
equal the number of unknown variables to ensure the “well-
posedness” of the problem. Grid size is crucial with respect to the
desired accuracy of a computation and is intricately associated with
numerical stability.

(3) Linearization of the resulting non-linear algebraic equations and
conversion into a matrix-vector system.

(4) Block tridiagonal elimination solution of the linearised matrix-vector
system using an improved algorithm.

Initially the boundary layer similarity equations are reduced to a set of five first
order equations by introducing new unknown functions of η-derivatives:

(12a)

(12b)

(12c)

(12d)

(12e)
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and the boundary conditions become :

(13)

A two-dimensional net is now superimposed on the ξ-η plane defined by:

(14)

Approximating the quantities f,U,V,θ�,G at the points ξn,η j on the net by
fj

n,Uj
n,Vj

n,�θj
n,Gj

n then the following non-linear algebraic equations are
obtained:

(15a-e)

where hj denotes the η step distance and kn designates the ξ step length and
where:

(16)

The non-linear algebraic equations (15a-e) are now solved using Newton’s
quasilinearisation method for which the iterates f0

(i),U0
(i),V0

(i),�θ0
(i), G0

(i) are
introduced valid for i = 0,1,2,3,4 … J with initial values equal to those at the
previous ξ-station (this generally being the most bankable guess available). For
the higher order iterates we set:
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(17)

where δ denotes the “error” in the estimate. Substitution of the RHS of these
expressions with the subsequent omission of quadratic terms in δfj

(i), δUj
(i),

δVj
(i), �δθj

(i), δGj
(i) generates the Keller “linearized” difference equations with

corresponding finalized boundary conditions. The resulting linearized
algebraic equations, which we do not state for conciseness, are solved
numerically under the appropriate boundary conditions using an extremely
efficient and computationally robust block-factorization technique[30] which
has been applied successfully by a number of researchers including Gorla[31]
and Beg et al.[32]. The system of linearized finite-difference equations is
eventually rewritten in the linear matrix-vector form :

(18)

where A designates the “ Keller coefficient matrix” of rank 5 × 5 (for 5th order
systems) which is discussed below and δj and rj denote the fifth order vectors
for the perturbation quantities and RHS residuals in the linearised equations. In
writing the linearized system a specific pattern is maintained. This is
performed in order to ensure non-singularity of the sub-hierarchical matrix A0
in A, which guarantees that the square matrix A0 has an inverse A0

–1 and this
inverse is unique (A0 .A0

–1 = A0
–1.A0 = I). The resulting system is a fifth order

linear system (f ///, θ // ). Owing to its block-tridiagonal structure, the system can
be implemented very successfully. The solution procedure is inherently very
rigorous algebraically and to facilitate the mathematics, it is cast into matrix-
vector form. The block elimination technique is a general method and can be
employed for any number of first-order equations, although as the order of the
system increases, extremely voluminous algebra becomes unavoidable in
tackling the “recursion” formulae which are generated, although for a fifth
order system, the amount of hand-analysis is manageable. We first define the
fifth-dimensional vectors:

(19)

where rj designates the RHS of the finite difference equations, and ∆j denotes
the vector of errors, i.e iterates, and T denotes transpose. In terms of these
vectors the finite difference equations for both the momentum and energy
equations can be formulated as:
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(20)

where Rj and Lj are coefficient matrices of order 5 × 5, and δj-1 denotes the
iterate vector at the previous step. The finite difference equations have to be
rearranged in order to comply with the order of the “δj” vectors and the rj vector.
The complete linear system of equations (20) can be shown to be cast as the
block matrix system or in compound block matrix notation, we can cast the
above system as:

(21)

where A is as the matrix of coefficients. It can be inferred that the non-zero
elements in the coefficient matrix are clustered about the diagonal. Thus
various “band-matrix” procedures can be adopted to solve the system of Aδ =
r. Keller implements the following tridiagonal factorization scheme which
demonstrates superior efficiency to the conventional band-matrix routines. The
coefficient matrix is of order 5J + 5, and the vectors δ and r also have this
dimension. We therefore decompose A into 5 × 5 blocks starting from the upper-
left-hand corner. Details are provided by Cebeci and Smith[30].Choleski
factorization is now employed to simplify the system with the structure Aδ = r,
using the triangularisation principle. The matrix A can in this way be
orchestrated in the form A = LU. Proceeding formally using row by column
expansion, the following recurrence relations can be deduced:

(22)

Keller[33] has shown with rigorous mathematical detail that the Γj matrix has
the same structure as that of the the Bj matrix. The ∆j matrix also has a similar
structure to Aj. The ∆j matrix “elements” are calculated using the recurrence
relation: 

(23)

The elements of the Γ j matrix are generated by implementing the recurrence
relation,

(24)

Cebeci and Bradshaw[29] rewrite equation A.δ = r, using now the L.U
factorisation method, viz:

(25)
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where they set;

(26)

so that (25) becomes:

(27)

Consequently, from the recurrence relations the double sweep operation is
executed, viz forward and backward sweeps to compute the δ components.
Following the block elimination computations the initial profiles for functions
f,U,V,�θ,G are generated and then used to march along the boundary layer in the
streamwise direction solving for ξ.

Numerical shooting computations
The momentum and energy equations (8) and (9) are now solved by a shooting
technique described comprehensively by Bèg[33] and Gorla and Takhar[34]. We
expand f and θ� in powers of the streamwise coordinate ξ as follows, this
procedure being valid for ξ < 1:

(28)

Denoting Φ = Re/GrDa, differentiating the expansions with respect to the
similarity coordinates ξ and η, truncating at second order and substituting into
the momentum equation and energy equation yields the following set of six
ordinary differential equations which govern the velocity (momentum) and
temperature field:

(29a-c) 

(30a-c)

Although the power series expansions are convergent for ξ < 1, they can be
generalised to converge for ξ < 1 using non-linear transformation techniques
developed by Shanks for divergent or slowly-convergent series[33].The system
of ODEs (29 a-c), (30a-c) can now be numerically integrated using fourth-order
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Runge-Kutta-Merson quadrature supplied by the powerful NAG library
routines. This method is an extension of the conventional Runge-Kutta shooting
scheme (which marches unidirectionally, say from zero to infinity) for the case
of two point boundary value problems. The double-shooting scheme therefore
in addition has to shoot back from infinity to zero, a process which is repeated
until a certain convergence criterion has been satisfied. In the DSRK scheme
both initial and boundary values are given and the multiple order equations
generated by the Taylor expansions are solved by integration of these ordinary
differential equations with Runge-Kutta-Merson stepping formulae, embodied
in the NAG routine DO2HBF. The range of integration is split into equal
increments (∆x where x = η) and the computation progresses from x = 0 (initial
condition) in successive increments to the final boundary condition.
Systematically, therefore, for a set of ordinary differental equations given by: 

(31)

the solution is advanced from xn to xn + H = xn+1, the integration step being
designated by H. The value of the general function Q is given by the formula:

where

(32)

The higher the order, the greater the diversity of possible schemes in the
extended Runge-Kutta method, and the lower the truncation error. The NAG
routine DO2HBF is extremely large and in fact composed of over 30 smaller
subroutines which each perform a specific numerical task. Details are provided
by Beg[34]. Here we briefly mention the important routine DO2SAF which is
responsible for computing the Jacobian matrix whose (i,j)th element depends on
the derivative of the general function Qi with respect to the jth boundary
condition parameter denoted P(J) in the program. The matrix is evaluated by a
numerical differentaiation technique requiring N1 integrations of the multiple
first order system (29a-c), (30a-c), where N1 designates the quantity of
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unspecified boundary conditions. Owing to the sensitivity of numerical stability
to the mesh step size, a mediocre and well-tested value of 0.1 in the η direction
was used and typical compilation times averaged around 300 seconds on a 66
MHz VICTOR Computer. 

Results and discussion
The surface shear stress, i.e. local skin friction function Cf / 2(Rex)1/2 and local
heat transfer parameter i.e. local Nusselt number function Nux/(Rex)1/2 are
defined by:

(33a,b)

Figures 1a,b to 2a,b illustrate the surface shear stress V (ξ,0) i.e. f//(ξ,0) and local
heat transfer G(ξ,0), i.e. θ/(ξ,0) profiles (calculated with the Keller-Box method)
versus streamwise variable ξ for a number of parameter combinations of Ec, Gr,
Pr, Da, Re and λ. Figures 5 to 15a,b show the variation of velocity functions f0

/

(η), f1
/(η), f2

/(η) and temperature functions �θ0 (η), θ1 (η), θ2 (η) with spanwise
coordinate η using the Runge-Kutta-Merson double shooting technique (DSRK),
results being presented for a number of values of Ec, Gr, Pr, Da, Re and λ as
depicted in the figures overleaf. For the particular case of ξ = 0.0 solutions
obtained by both Keller-box and DSRK methods are provided. 

The effects of the first order porous parameter Re/GrDa where Da is the
Darcy number and represents the bulk linear matrix resistance are shown in
Figures 4a,b.

Elevation in the Darcy number from 0.002 to 0.05 leads to a large increase in
surface shear stress at the wall. An increase in Da causes an increase in the
magnitude of local heat transfer parameter �θ/(ξ,0) as depicted in Figure 1b. 

The effects of the viscous dissipation parameter – Eckert number Ec – are
depicted in Figures 2a,b. Positively increasing Ec values cause a corresponding
increase in the shear stress function at the wall and physically Ec > 0
corresponds to cooling of the plate (wall). Takhar et al.[27] have indicated in
their earlier Darcy-Brinkman study that velocity gradients (f /(η ) etc.) are
affected by the enhanced heating of the fluid in the boundary layer leading to an
escalation in the “local” velocities in the vicinity of the wall. A more dramatic
change in local heat transfer θ /(ξ,0) is observed [for positive Ec values (0.3,0.5)]
which decrease in magnitude. Ec denotes the magnitude of work done by
friction. Positive values of Ec correspond to the case of heat extraction, i.e.
cooling of the plate surface, as encountered, for example, in fluid withdrawal
from geothermal reservoirs and vice versa for negative Ec values. As Ec
decreases to –0.3 and –0.5, the shear stress decreases and the plate is heated.
The magnitude of the local heat transfer parameter θ /(ξ,0) is enhanced when Ec
becomes negative (plate heating). 
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Figure 1b.
Variation of V i.e. f//

(ξ,0) and G(ξ,0) i.e.
θ/(ξ,0) with streamwise
coordinate ξ at the plate
surface (η = 0) for
various Darcy (Da)
numbers; results for
Keller box scheme: 
α = 1.0, Gr = 100, 
Re = 1.0, Pr = 0.71, 
Ec = 0.3, λ = 1.0
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Figure 1a.
Variation of V i.e. f//

(ξ,0) and G(ξ,0) i.e.
θ/(ξ,0) with streamwise
coordinate ξ at the plate
surface (η = 0) for
various Darcy (Da)
numbers; results for
Keller box scheme: 
α = 1.0, Gr = 100, 
Re = 1.0, Pr = 0.71, 
Ec = 0.3, λ = 1.0
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Figure 2a.
Variation of V i.e. f//

(ξ,0) and G(ξ,0) i.e.
θ/(ξ,0) with streamwise

coordinate ξ at the plate
surface (η = 0) for

various Eckert numbers
(Ec); results for Keller
box scheme: α = 1.0, 

Gr = 100, Re = 1.0, 
Da = 0.01, Pr = 0.71, 

λ = 1.0

Key
Ec = 0.0
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Figure 2b.
Variation of V i.e. f//

(ξ,0) and G(ξ,0) i.e.
θ/(ξ,0) with streamwise

coordinate ξ at the plate
surface (η = 0) for

various Eckert numbers
(Ec); results for Keller
box scheme: α = 1.0, 

Gr = 100, Re = 1.0, 
Da = 0.01, Pr = 0.71, 

λ = 1.0
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The effects of various thermal conductivity ratios λ on surface shear stress
V(ξ,0), i.e. f//(ξ,0) and local heat transfer θ/(ξ,0) are given in Figures 3a,b. As λ is
elevated from a very low value of 0.05 to a mediocre value of 2.0 a distinct
reduction in shear stress occurs at the wall. Conversely, local heat transfer
magnitudes are dramatically increased with rising λ over the same range of λ
values.

The effects of Prandtl number on surface shear stress V(ξ,0), i.e. f //(ξ,0) and
local heat transfer θ/(ξ,0) can be seen in Figures 4a,b. As Pr is increased from
0.01, which represents liquid metal fluids in e.g. geophysical convective zones
and industrial metal flows, through 0.2, 1.0 to 10.0 and 100.0 (corresponding to
light and heavy reservoir oils), surface shear stresses are considerably
depressed. The magnitude of local heat transfer parameter G(ξ,0) is, however,
escalated considerably as Pr rises from 0.01 to 100. 

Viscous heating effects (characterized by the Eckert number Ec) on
temperature functions f0

/(η), f1
/(η), f2

/(η) and �θ0(η), θ1(η), θ2(η) can be seen in
Figures 5 to 7. A large positive change in Ec has negligible effect on the velocity
functions, since the frictional work term does not appear in the momentum
equation, and is therefore only very weakly coupled through the temperature
equation; therefore velocity plots have been omitted. The dissipative heat effect,
however, causes an increase in the magnitude of the temperature function θ0(η)
(Figure 5) from Ec = 0.0 (no viscous dissipation) to Ec = 0.3, 0.5 (large viscous
dissipation and plate cooling). Excellent agreement is observed between the
Keller-Box computations performed with η∞= 4.0 and an η-step distance of 0.1
and the DSRK computed profiles. 

Temperatures θ1(η), θ2(η) (Figures 6,7) all increase in magnitude consistently
as Ec rises from 0.0 through 0.3 to 0.5.

Figures 8a,b-9a,b depict the effects of the porous parameter (Re/GrDa) on the
velocity and temperature field functions f1

/, f2
/ and �θ1, �θ2,. A rise in Darcy

parameter Re/GrDa from 0.2 to 0.8 causes a decrease in the magnitude of f1
/.

Temperature function θ1 decreases markedly in magnitude as (Re/GrDa) rises
from 0.2 to 0.8. Conversely, the second order velocity function f2

/ increases
substantially positively although values are generally negative. The second
order temperature function �θ2 on the other hand is diminished with rising
(Re/GrDa) parameter since this implies decreasing Darcy number Da which
physically translates as a lower permeability of the porous matrix for any
stipulated Re and Gr values, i.e. less space for the fluid to move through
implying reduced convection heat transfer, and enhanced conduction.

The profiles for velocity functions f1
/, f2

/ and temperature functions θ0, �θ1,
θ2,versus η for various λ values are illustrated in Figures 10 to 12a,b. From
Figure 10, θ0 decreases considerably as λ rises tenfold from 0.2 to 2.0, Ec being
fixed at 0.3. The Keller-Box and DSRK profiles are virtually indistinguishable
implying excellent agreement for these two numerical schemes. Velocity
function f1

/ decreases with λ for a given Ec value of 0.5. θ1, however, increases
in magnitude greatly as λ rises from 0.02 to 0.04. The values for �θ1, are also
higher for Ec = 0.5 than for Ec = 0.0, i.e. viscous dissipation has a positive effect
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Figure 3a.
Variation of V i.e. f//

(ξ,0) and G(ξ,0) i.e.
θ/(ξ,0) with streamwise

coordinate ξ at the plate
surface (η = 0) for

various thermal
conductivity ratios (λ);

results for Keller box
scheme: α = 1.0, 

Gr = 100, Re = 1.0, 
Da = 0.05, Pr = 0.71, 

Ec = 0.3
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Figure 3b.
Variation of V i.e. f//

(ξ,0) and G(ξ,0) i.e.
θ/(ξ,0) with streamwise

coordinate ξ at the plate
surface (η = 0) for

various thermal
conductivity ratios (λ);

results for Keller box
scheme: α = 1.0, 

Gr = 100, Re = 1.0, 
Da = 0.05, Pr = 0.71, 

Ec = 0.3
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Figure 4a.
Variation of V i.e. f//

(ξ,0) and G(ξ,0) i.e.
θ/(ξ,0) with streamwise
coordinate ξ at the plate
surface (η = 0) for
various Prandtl
numbers (Pr); results for
Keller box scheme: 
α = 1.0, Gr = 100, 
Re = 1.0, Da = 0.05, 
Ec = 0.2, λ = 1.0

Key
Pr = 0.01 (Liquid Metals)
Pr = 0.2 (Cryogenic Fluids)
Pr = 1.0 (Geothermal Water)
Pr = 10.0 (Heavy Oils)
Pr = 100.0 (Very Heavy Oils)
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Figure 4b.
Variation of V i.e. f//

(ξ,0) and G(ξ,0) i.e.
θ/(ξ,0) with streamwise
coordinate ξ at the plate
surface (η = 0) for
various Prandtl
numbers (Pr); results for
Keller box scheme: 
α = 1.0, Gr = 100, 
Re = 1.0, Da = 0.05, 
Ec = 0.2, λ = 1.0

Key
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Figure 5.
Variation of θ0 (η) with
spanwise coordinate η

for ξ = 0; results
generated by DSRK

scheme and Keller box
for various Eckert

numbers (Ec): α = 1.0,
Pr = 0.71, λ = 1.0

Key
Ec = 0.0 (Keller – Box)
Ec = 0.0 (DSRK)
Ec = 0.3 (Keller – Box)
Ec = 0.3 (DSRK)
Ec = 0.5 (Keller – Box)
Ec = 0.5 (DSRK)
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Figure 6.
Variation of θ1 (η) with
spanwise coordinate η

for ξ = 0; results
generated by DSRK
scheme for various

Eckert numbers (Ec): 
α = 1.0, Pr = 0.71, 

λ = 0.02, Re/GrDa = 0.2
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Figure 7.
Variation of θ2 (η) with
spanwise coordinate η
for ξ = 0; results
generated by DSRK
scheme for various
Eckert numbers (Ec): 
α = 1.0, Pr = 0.71, 
λ = 0.02, Re/GrDa = 0.2
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Figure 8a.
Variation of f1

/(η) and 
θ1 (η) with spanwise
coordinate η; results
generated by DSRK
scheme for various
Darcy parameters
(Re/GrDa): α = 1.0, 
Pr = 0.71, λ = 0.02, 
Ec = 0.3
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Figure 8b.
Variation of f1

/(η) and θ1
(η) with spanwise

coordinate η; results
generated by DSRK
scheme for various
Darcy parameters

(Re/GrDa): α = 1.0, 
Pr = 0.71, λ = 0.02, 

Ec = 0.3
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Figure 9a.
Variation of f2

/(η) and
θ2(η) with spanwise
coordinate η: results
generated by DSRK
scheme for various
Darcy parameters

(Re/GrDa): α = 1.0, 
Pr = 0.71, λ = 0.02,

Ec = 0.3
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Figure 9b.
Variation of f2

/(η) and
θ2(η) with spanwise
coordinate η: results
generated by DSRK
scheme for various
Darcy parameters
(Re/GrDa): α = 1.0, 
Pr = 0.71, λ = 0.02,
Ec = 0.3
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Figure 10.
Variation of θ0 (η) with
spanwise coordinate η
for ξ = 0.0; results
generated by DSRK
scheme and Keller-box
for various thermal
condctivity ratios (λ): 
α = 1.0, Pr = 0.71, 
Ec = 0.3
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Figure 11a.
Variation of f1

/(η) and
θ1(η) with spanwise
coordinate η; results
generated by DSRK
scheme for thermal

conductivity ratios (λ): 
α = 1.0, Pr = 0.71,

Re/GrDa = 0.2
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Figure 11b.
Variation of f1

/(η) and
θ1(η) with spanwise
coordinate η; results
generated by DSRK
scheme for thermal

conductivity ratios (λ): 
α = 1.0, Pr = 0.71,

Re/GrDa = 0.2
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Figure 12a.
Variation of f2

/(η) and
θ2(η) with spanwise
coordinate η; results
generated by DSRK
scheme for thermal
conductivity ratios (λ):
α = 1.0, Pr = 0.71,
Re/GrDa = 0.2
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Figure 12b.
Variation of f2

/(η) and
θ2(η) with spanwise
coordinate η; results
generated by DSRK
scheme for thermal
conductivity ratios (λ):
α = 1.0, Pr = 0.71,
Re/GrDa = 0.2
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on the magnitude of �θ1. The second order function profiles for f2
/ and θ2, are

shown in Figures 12a,b. f2
/ magnitudes are decreased slightly as λ rises from

0.02 to 0.04 with Ec fixed at 0.5. Temperature�θ2 is, however, greatly increased
as λ rises from 0.02 to 0.04. 

Figure 13 shows the variation of the zero order temperature �θ0 function with
the spanwise coordinate η for various Prandtl numbers obtained with the
double shooting Runge Kutta method (DSRK) and Keller-Box scheme. As Pr is
increased from 0.01 (liquid metals) to 1.0 and then 10.0, a large fall in
temperature is induced since larger Prandtl number fluids have lower thermal
diffusivites for a given viscosity and therefore less thermal energy is
transported. Both Keller-Box and DSRK computations are practically identical
again, reflecting the excellent accuracy of the Keller finite-difference scheme.

Observing Figures 14a,b and 15a,b, first order velocity f1
/ is increased

slightly in magnitude as Pr falls from 0.71 designating air to 0.2[35], which is of
the range for most refrigerant or cryogenic fluids used in industry and certain
geothermal gases. First order temperature function θ1 is similarly increased
positively (although effectively the magnitude falls) by reduction in the Prandtl
number. Finally second order velocity f2

/ and temperature function �θ2 are 

Figure 13.
Variation of θ0(η) with
spanwise coordinate η

for ξ = 0; results
generated by DSRK

scheme and Keller-box
method for various

Prandtl numbers (Pr): 
α = 1.0, λ = 1.0, 

Ec = 0.2
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Figure 14b.
Variation of f1

/(η) and
θ1(η) with spanwise
coordinate η; results
generated by DSRK
scheme for various
Prandtl numbers (Pr): 
α = 1.0, λ = 0.02, 
Ec = 0.0, Re/GrDa = 0.2
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Figure 14a.
Variation of f1

/(η) and
θ1(η) with spanwise
coordinate η; results
generated by DSRK
scheme for various
Prandtl numbers (Pr): 
α = 1.0, λ = 0.02, 
Ec = 0.0, Re/GrDa = 0.2

0.00
Similarity Variable ( η)

2.00 4.00 6.00 8.00

1.60

1.20

0.80

0.40

0.00

–0.40

–0.80

Velocity Function f’ 1

Key
Pr = 0.71 (Air)
Pr = 0.2 (Cryogenic Fluids, Geothermal Gases)



Brinkman’s
model: numerical

study

587

Figure 15a.
Variation of f2

/(η) and
θ2(η) with spanwise
coordinate η; results
generated by DSRK
scheme for various

Prandtl numbers (Pr): 
α = 1.0, λ = 0.02, 

Ec = 0.0, Re/GrDa = 0.2
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Figure 15b.
Variation of f2

/(η) and
θ2(η) with spanwise
coordinate η; results
generated by DSRK
scheme for various

Prandtl numbers (Pr): 
α = 1.0, λ = 0.02, 

Ec = 0.0, Re/GrDa = 0.2

0.00
Similarity Variable ( η)

2.00 4.00 6.00 8.00

0.30

0.20

0.10

0.00

Temperature Function ϑ2

Key
Pr = 0.71 (Air)
Pr = 0.2 (Cryogenic Fluids)

(Geothermal Gases)



HFF
8,5

588

respectively increased slightly in magnitude and decreased considerably as Pr
is lowered from 0.71 to 0.2.

Concluding remarks
Buoyancy-induced two dimensional convective boundary layer flow past a flat
vertical plate embedded in a homogeneous, isotropic, saturated porous medium
has been analysed using the Darcy-Brinkman porous model, a pseudo-
similarity transformation and numerical techniques. It has been shown that
local shear stresses at the plate are enhanced with increasing Da and Ec values
and conversely depressed with rising λ and Pr values. Rising λ, Pr and Da all
elevate local heat transfer magnitudes. Heat transfer is, however, reduced with
increasing Ec since this corresponds to cooling of the plate, i.e. loss of thermal
energy.
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